
http://www.coverity.com © 2003 Coverity, Inc.

Developed by a team of researchers in the Computer Systems Lab at Stanford University,
SWAT’s source code analysis technology is based on powerful patent pending statistical learning
techniques combined with a comprehensive abstract dataflow engine. Initial applications resulted
in the successful detection of over 2000 defects in Linux, including hundreds of security holes.

This whitepaper illustrates a number of real bugs that SWAT identified in the Linux kernel.
Although SWAT finds many other classes of defects (see http://www.coverity.com/coverity-
checkerlist.pdf), the following examples illustrate SWAT’s basic capabilities.

Illegal Pointer Accesses

NULL pointer dereferences are a common type of software defect that result in system crashes.
In this Linux example, SWAT determines that create_proc_entry() can potentially return a
NULL pointer in line 366. Pointer p, however, is not checked to be a valid non-NULL pointer
before it is dereferenced in line 367. If p indeed was NULL, the system will crash.

When there is an assignment or a function call that can set a pointer to NULL, SWAT checks
every path through the code to ensure that the pointer is checked to be valid before it is accessed.
SWAT uses sophisticated interprocedural analyses and statistical learning techniques to assess
which assignments or function calls should be targeted. Further, SWAT uses powerful data-flow
analyses to track each pointer, even if it is reassigned to other variables or fields.

==>
NULL detector: pointer p is potentially NULL
File: /linux/2.4.4/drivers/media/video/videodev.c
Function: videodev_proc_create_dev
Line: 366
 p = create_proc_entry(name, S_IFREG|S_IRUGO|S_IWUSR, video_dev_proc_entry);

==>
NULL detector: Illegally dereferencing p
Line: 367
 p->data = vfd;
 p->read_proc = videodev_proc_read;
 d->proc_entry = p;

http://www.coverity.com © 2003 Coverity, Inc.

Memory Leaks

Memory leaks are infamous for being pervasive and difficult to diagnose. Although runtime tools
such as Purify can help locate some of the leaks, they only check parts of the code that are
actually executed during testing. For large code bases, runtime tools result in monitoring only a
very small fraction of the possible execution paths. Further, runtime tools do not diagnose the
root cause of the leak.

On the other hand, SWAT detects memory leaks at compile time and checks all possible paths
through the code. In the example below, SWAT automatically infers that alloc_skb() is a memory
allocation function and discovers a scenario where the enclosing routine exits without freeing the
allocated memory (skb), resulting in a leak.

==>
LEAK detector: allocating storage skb
File: /linux/2.5.48/drivers/isdn/tpam/tpam_queues.c
Function: tpam_irq
Line: 112
 if (!(skb = alloc_skb(sizeof(skb_header) + sizeof(pci_mpb) +
 …
 do {
 hpic = readl(card->bar0 + TPAM_HPIC_REGISTER);
 if (waiting_too_long++ > 0xffffffff) {
 spin_unlock(&card->lock);
 printk(KERN_ERR “TurboPAM(tpam_irq):” “waiting too long…\n”);

==>
LEAK detector: missing deallocation of pointer skb
Line: 150
 return;
 }
 } while (hpic & 0x00000002);
 …
 kfree_skb(skb);

Use After Free

SWAT can also detect use-after-free bugs, where memory is accessed after it is freed. In the
following example, the programmer erroneously uses index i instead of j in line 822, freeing the
same memory location ippp_table[i] multiple times. Once a pointer is freed, SWAT checks all
ensuing paths to see if it is accessed (along iterations around the inner for-loop in this example).

This particular error is precisely the type that would be difficult to catch without SWAT since the
actual error would not be hit at runtime unless a hard-to-test condition in the if-statement is true.

http://www.coverity.com © 2003 Coverity, Inc.

 for (i = 0; i < ISDN_MAX_CHANNELS; i++) {
 if (!(ippp_table[i] = (struct ippp_struct *) kmalloc(sizeof(struct ippp_struct),
 GFP_KERNEL))) {
 printk(KERN_WARNING " isdn_ppp_init: Could not alloc ippp_table\n");
 for (j = 0; j < i; j++)

==>
USE-AFTER-FREE detector: using freed storage ippp_table[I]
File: /linux/2.4.4-ac8/drivers/isdn/isdn_ppp.c
Function: isdn_ppp_init
Line: 822
 kfree(ippp_table[i]);

Buffer Overrun

Unlike other defect-detection tools, SWAT is not limited to finding only NULL dereferences or
simple memory leaks. SWAT’s sophisticated analysis engine can also locate cases of buffer
overruns, in which data is modified outside of the logical bounds of arrays or buffers. Buffer
overruns are particularly difficult to diagnose since the effects of the violations commonly
manifest millions of cycles after the errors occur, making it difficult to trace back to the root
causes.

SWAT detected many cases of buffer overruns in Linux, including the one shown below. The
character array buf is declared with size 20. Pointer base addresses the fourth element in buf. On
line 1170, however, base[16] which is the 17th element of base and the 21st element of buf is
accessed, modifying data that is outside the bounds of the 20 character buffer. This may result in
the corruption of an unrelated part of memory with detrimental effects. Buffer overruns are also
frequently sources of security vulnerabilities.

 unsigned char buf[20], *base;
 struct dvd_layer *layer;
 …
 base = &buf[4];
 layer = &s->physical.layer[layer_num];
 …
 layer->linear_density = base[3] >> 4;
 layer->start_sector = base[5] << 16 | base[6] << 8 | base[7];
 layer->end_sector = base[9] << 16 | base[10] << 8 | base[11];
 layer->end_sector_l0 = base[13] << 16 | base[14] << 8 | base[15];

==>

http://www.coverity.com © 2003 Coverity, Inc.

BUFFER OVERRUN detector: index 16 is out of bounds
FILE: /linux/2.5.48/drivers/cdrom/cdrom.c
Function: dvd_read_physical
Line: 1170
 layer->bca = base[16] >> 7;
 return 0;
 }

Concurrency Errors

A unique feature of SWAT is its ability to detect concurrency bugs. Deadlocks and race
conditions are some of the most difficult problems to debug. Error scenarios are nearly
impossible to reproduce, since they rely on a particular scheduling of threads. Concurrency
problems can manifest in systems “hanging” or results being unpredictable. SWAT is the only
tool that can automatically detect concurrency errors in non-trivial software programs.

SWAT detected the following deadlock in Linux. Thread 1 acquires lock im->lock and
eventually tries to acquire lock inetdev_lock in devinet.c:759. Thread 2 in the meantime acquires
lock inetdev_lock, which Thread 1 will need, and eventually tries to acquire lock in_dev->lock.
Finally, Thread 3 acquires lock in_dev->lock, which Thread 2 will need, and, in turn, tries to
acquire lock im->lock. If scheduled in a certain way, Thread 1 will wait on a lock that Thread 2
owns, Thread 2 will wait on a lock that Thread 3 owns, and, finally, Thread 3 will wait on a lock
that Thread 1 owns. This circularity in the hold-wait relationships among the different locks leads
to a situation where none of the threads can progress, resulting in a deadlock.

==>
DEADLOCK detector: lock cycle detected
Thread 1: im->lock --> inetdev_lock
File: /linux/net/ipv4/igmp.c
Line: 268
 static void igmp_timer_expire(unsigned long data)
 {
 …
 spin_lock(&im->lock);
 im->tm_running=0;

 if (IGMP_V1_SEEN(in_dev))
 err = igmp_send_report(…);

 -> ip_route_output_key:2149
 -> __ip_route_output_key:2142

 -> ip_route_output_slow:1988
 -> fib_semantics.c:__fib_res_prefsrc:638
 -> devinet.c:inet_select_addr:759
 read_lock(&inetdev_lock);

http://www.coverity.com © 2003 Coverity, Inc.

==>
Thread 2: inetdev_lock --> in_dev->lock
File: /linux/net/ipv4/devinet.c
Line: 759
 u32 inet_select_addr(const struct net_device *dv, u32 dst, int scope)
 {
 u32 addr = 0;
 struct in_device *in_dev;

 read_lock(&inetdev_lock);
 in_dev = __in_dev_get(dev);
 if (!in_dev)
 goto out_unlock_inetdev;
 read_lock(&in_dev->lock);

==>
Thread 3: in_dev->lock --> im->lock
File: /linux/net/ipv4/igmp.c
Line: 338
 static void igmp_heard_query(struct in_device *in_dev, …)
 {
 …
 read_lock(&in_dev->lock);
 for(im=in_dev->mc_list; im!=NULL; im=im->next) {
 …
 igmp_mod_timer(im, max_delay);

 -> igmp_mod_timer:165
 spin_lock_bh(&im ->lock);

Security Vulnerabilities

Another powerful feature of SWAT is its ability to detect security vulnerabilities. SWAT is the
only commercially available tool that can pinpoint security holes at the source code level.
Malicious hackers can exploit security holes in the program to gain control of the system, corrupt
or compromise data, or significantly degrade performance (DOS attacks).

In the following example, SWAT detected the use of tainted data that was used in a memory
copying routine without first performing sanitization. The structure d is copied from an untrusted
processes into kernel memory in line 1411 using the routine copy_from_user(). The field d.idx
is checked for overflow and underflow immediately, but the remaining fields remain tainted. On
line 1419, two of these tainted fields, d.address and d.used are passed to another call to
copy_from_user(), allowing the user to overflow the kernel buffer with memory from an
arbitrary address. Variants of this sort of attack are commonly used by hackers to attain root
privileges.

http://www.coverity.com © 2003 Coverity, Inc.

==>
SECURITY HOLE detector: Data d tainted
File: /linux/2.4.6/drivers/char/drm/i810_dma.c
Function: i810_copybuf
Line: 1411
 if (copy_from_user(&d, (drm_i810_copy_t *)arg, sizeof(d)))
 return -EFAULT;

 if(d.idx < 0 || d.idx > dma->buf_count) return -EINVAL;
 buf = dma->buflist[d.idx];
 buf_priv = buf->dev_private;
 if (buf_priv->currently_mapped != I810_BUF_MAPPED) return -EPERM;

==>
SECURITY HOLE detector: Use of tainted data ‘d.address’
SECURITY HOLE detector: Use of tainted data ‘d.used’
Line: 1419
 if (copy_from_user(buf_priv->virtual, d.address, d.used))
 return -EFAULT;

 sarea_priv->last_dispatch = (int) hw_status[5];

Statistical Inference

SWAT uses patent-pending statistical learning techniques to adapt to each new code base,
accounting for company-specific conventions and coding styles. In addition, SWAT can infer
domain-specific rules to check without knowing what they are a priori. The Linux bug illustrated
below is one example.

SWAT tracks all pairs of events in the code, such as pairs of function calls, and detects cases
where the programmer significantly deviates from the rest of the code base. In this example,
SWAT infers that a call to lock_kernel() is generally followed by a call to unlock_kernel().
When it finds a deviant case along a path where unlock_kernel() is not called (because of a
return in line 2058), SWAT flags it as a potential error. Using the same statistical learning
techniques, SWAT also ranks such errors based on how likely they are to be real bugs.

==>
STATISTICAL A-B detector: lock_kernel is not followed by unlock_kernel
File: drivers/sound/cmpci.c
Function : cm_midi_release
Line: 2058
 lock_kernel();
 if (file->f_mode & FMODE_WRITE) {

http://www.coverity.com © 2003 Coverity, Inc.

 add_wait_queue(&s->midi.owait, &wait);
 for (;;) {
 …
 if (count <= 0)
 break;
 if (signal_pending(current))
 break;
 if (file->f_flags & O_NONBLOCK) {
 remove_wait_queue(&s->midi.owait, &wait);
 set_current_state(TASK_RUNNING);

==>
STATISTICAL A-B detector: Missing call to unlock_kernel
Line: 2073
 return -EBUSY;
 }
 …
 unlock_kernel();

Summary

The bugs described in this whitepaper illustrated actual Linux bugs that were fixed as a result of
SWAT’s analysis. Although they give a sense for the general capabilities or SWAT, these errors
only show the tip of the iceberg. SWAT detected many other types of errors among the
thousands of Linux bugs that it found, and has since been applied to major code bases at some of
the largest software companies in the world with equal success.

The analyses that uncovered the Linux bugs shown above are generic checks that come
prepackaged with SWAT. Unlike other tools, SWAT can also be easily extended with company-
specific checks using simple to use script and API level interfaces. Company coding policies and
API rules can be turned into SWAT checks, and bugs found by QA after they are hit (in the field)
can also be translated into SWAT analyses to detect similar errors in other parts of the code.

About Coverity

Coverity, Inc. is a leading provider of source code analysis solutions that help organizations
produce reliable, secure software while significantly improving time to market. Coverity’s
quickly growing customer base includes a wide range of companies, from startups to Fortune 100
enterprises. Coverity, Inc. is headquartered in Menlo Park, California. For more information or a
free trial, contact us at:

Tel: 1-650-980-3408
E-mail: info@coverity.com

